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Helical turbulence and absolute equilibrium 
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Dublin, New Hampshire 

(Received 22 January 1973) 

The interaction of two pure helical (circularly polarized) velocity waves according 
to the incompressible Navier-Stokes equation produces modulation products of 
mixed helicity. In general, the interaction of waves of opposite helicity is stronger 
than that of waves with the same helicity. The inference is that strong net 
helicity depresses overall turbulent energy transfer. The conservation laws 
strongly inhibit energy transfer from higher to lower wavenumbers, when the 
helicity is large. The absolute equilibrium spectra of velocity and helicity for an 
inviscid flow system truncated at  an upper wavenumber k, are 

U ( k )  = %/(a2 - P2k2), Q ( k )  = 2/3ke/(a2 - p2k2) ,  

where the velocity variance and helicitylunit volume are I U ( k )  d3k and IQ(k)  d3k, 
respectively. The temperature parameters a and /3 are constrained by a > 0 and 
lPk21 < a. There are no analogues of the negative-temperature equilibrium 
states known for two-dimensional inviscid flow. It is argued that the inertial- 
range energy cascade in isotropic turbulence driven by helical input should not 
differ asymptotioally from that of non-helical turbulence. The absolute equili- 
brium distributions suggest that, in contrast to the analogous two-dimensional 
situation, statistically steady helical input at  middle wavenumbers should not 
produce a significant downward cascade of energy to lower wavenumbers. 

1. Introduction 
Turbulence with net helicity has received recent attention because of its prob- 

able importance in the generation of turbulent magnetic fields (Moffatt (1970, 
1972); extensive further references are given in these papers). Such turbulence is 
also of basic theoretical importance because it emphasizes constants of motion 
whose existence has long been ignored. Moffatt (1969) showed that the total 
helicity of a bounded flow, defined as 

JU . W a 3 X  

(u = velocity field, w = vorticity field), is an inviscid constant of motion because 
it measures the degree of linkage, or knottedness, of the vortex lines. Helicity 
conservation is thus a particular consequence of the Kelvin circulation theorem, 
which identifies an infinity of inviscid constants of motion: the circulations about 
all closed circuits that move with the fluid 

The two quadratic constants of motion, kinetic energy and helicity, in inviscid 
three-dimensional flow suggest that there may be some analogies between 
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three-dimensional turbulence with non-zero helicity and two-dimensional turbu- 
lence, where there are also two quadratic constants: energy and enstrophy. 
Certain of the possibilities have been discussed by Frisch, Lesieur and their 
colleagues (Lesieur, Frisch & Brissaud 1971; Brissaud et al. 1973). In  the present 
paper, the analogy between the two kinds of flow is explored by examining the 
absolute inviscid equilibrium ensembles with net helicity , following an earlier 
treatment of absolute equilibrium ensembles in two-dimensional flow (Kraich- 
nan 1967), and by noting some qualitative effects of the helicity-conservation 
constraint on the energy-cascade process in non-equilibrium states. 

2. Interaction of two helical waves 
A plane-polarized solenoidal velocity wave, for example 

u(x) = (0, sin (kx3) ,  0): 

has zero helicity; the vorticity and velocity vectors are perpendicular. But for 
the circularly polarized wave (Moffatt 1970) 

u(x) = (sin (kxJ, cos (kx,), 0) ,  

0(x) = v x u(x) = (Icsin (kx3),  kcos (kx3),  O ) ,  

(1) 

(2) we have 

so that u.O = klu12, 

By changing the sign of uI(x) in (l), we reverse the circular polarization and obtain 
a wave of opposite helicity The two helical waves provide an alternative to the 
usual Fourier decomposition into plane-wave components. In  terms of the 
usual Fourier coefficients, defined by 

u(x) = Zeik.Xu(k), 
k 

(3) 

where the sum is over all allowed k for a cyclical box of side L, (1) and (2) become 

u(k) = ( - Bi, +, 0), U( - k) = u*(k), (4) 

0(k)  = ik x u(k) = (- Jik, Sk, 0). (5) 

Thus, o(k).u*(k) = Iclu(k)12. ( 6 )  

This shows that ( 4 )  is a pure helicity wave, since it is trivial to show, froiii the 
definition of vorticity, that 

l0(k).u*(k)l G Ikl lU(k)l27 (7) 

for any choice of u(k) that gives a real, solenoidal velocity fieId. 
The incompressible Navier-Stokes equation may be written as 

+ yk2)  u(k) = - i c k .  u(q) [U(P)llk, (8) 
P+q= k 

where v is kinematic viscosity and [u(p)]~k is the vector projection of u(p) 
on the plane normal to k. Now consider an inviscid flow in which the initial ex- 
citation is confined to pure helical waves at  a single pair of wave vectors ( 5 p, 
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FIGURE 1. Geometry of the triad of interacting wave vectors. 

5 9). Let p, q and k = p + q lie in the 1, 3 co-ordinate plane, with k pointing in 
the negative 3 direction, as shown in figure 1. Here a, /? and y are the interior 
angles of the triangle. Initially, (8) reduces to 

au(k)/2t = -ik.u(q) [ U ( P ) l ~ k - ~ ~ . u ( p )  [u(q)l_~k* (9) 

We may take the two helical waves as 

u(p) = (&icosy,#,&isiny), u(q) = (kQicos/?,&, ~ i i s i n p ) ,  (10) 

so that 4 P )  = PNP), 4 q )  = ?qu(q). 

Thus, the upper signs in the expression for u(q) yield a q wave with the same sign 
of helicity as the p wave, while the lower signs give waves of opposite helicities. 
Substituting (10) into (9)) we find 

2u(k)/2t = - @[ T i(cos y sin /3 - cosP sin y ) ,  sin y sin ,8,0]. (11) 

Equation (11) shows, first of all, that the interaction of the pure helical p 
and q waves does not generate a k wave of pure helicity. This follows immediately 
from the fact that Izi,(k) I + ltiz(k) I. However, (1  1) shows an important asym- 
metry to the choice of same or different helicities for p and q. For zi,(k), this choice 
merely affects the sign, but for ti#), the component normal to the plane of the 
wave vectors, the choice determines whether we have sin y + sinp or sin y - sin/?. 
The contrast is sharpest for the isosceles triangle p = q. Here the choice of same- 
signed helicity for p and q gives a null interaction, ti(k) = 0, while helicities of 
different signs yield zi2(k) $: 0. More generally we see that for p, y < in, which 
includes the case p ,  q < k, 16(k) I is greater if the p and q waves have helicities of 
different sign than if they have the same sign. Since triangles of this kind may be 
expected to play an important, if not dominant, role in the usual isotropic energy 
cascade fromlower to higher wavenumbers, we are led to an important qualitative 
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inference: for a given energy-spectrum shape, overall energy transfer should be 
less for turbulence with maximal helicity, 

(12) 

with the i. sign the same for all k, than for reflexion-invariant turbulence. 
Moreover, it is clear that (12) will not survive under the Navier-Stokes equation, 
if it is imposed as an initial condition. Equation (1 1) suggests further that the 
asymmetry may be sufficient that the ordinary cascade process in reflexion- 
invariant turbulence is in fact dominated by interactions between wave pairs of 
opposite helicity. To confirm this conjecture, we must, of course, do more than 
examine initial behaviour. Further information could come from integration of 
closure approximations, or from direct computer simulation. 

(o*(k). u(k)) = i. q U(k)I2), 

3. Absolute equilibium ensembles 
Let us now consider the absolute statistical equilibrium (v = 0 )  of the truncated 

system obtained by retaining in (8) only those wavenumbers which fall in an 
interval (kl, k2) .  The total kinetic energy (divided by density) and total helicity 
may be written as 

$ ( L / ~ T ) ~  C u,(k) @(k) 
k 

and i ( L l 2 ~ ) ~  C eimjIcmui(k) u;(k), 
k 

respectively, where the sum is over all retained wave vectors. Here eimj vanishes 
if any two indices are the same and equals rt 1 otherwise, according to whether an 
even or odd number of permutations is needed to bring the indices to the order 
1, 2,  3. 

The truncated system still conserves both energy and helicity. In  fact, these 
quantities are conserved individually by each triad of interacting wave vectors 
( i. k, +_ p, +_ 9). To see this, consider an instantaneous state in which any given 
set of wave vectors (and their negatives) have arbitrary amplitudes, subject only 
to the reality condition u( - k) = u*(k), while the amplitudes at  all other wave 
vectors are zero. Since, the energy and helicity expressions are quadratic and 
diagonal in the wave-vector amplitudes, the instantaneous rate of change of the 
energy and helicity in the instantaneously unexcited wave vectors is zero. Thus 
the overall conservation implies that the energy and helicity in the excited modes 
by themselves are conserved. But since the excited modes are chosen arbitrarily, 
and have arbitrary amplitudes, it follows that the conservation is an identity 
property of the coefficients, in the Navier-Stokes equation, that couple each 
individual triad of wave vectors. The detailed conservation properties can also 
be verified by direct calculation. 

This truncated, inviscid system is an example of the class of dynamical systems 
whose variables yi obey equations of the form 

dy,ldt = UY), (13) 
satisfy a generalized Liouville theorem, 

CI aq(Y) /aYi  = 0, 
i 

(14) 
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dK(Y)/dt = x &(?.I) aK(Y)/aYi 3 0. 
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and exhibit a constant of motion K(y): 

(15) 
i 

The 5 may be taken as the real and imaginary parts of the two independent 
components of the transverse vectors u(k) ;  (14) then follows readily from (8) 
(Lee 1952), and K may be taken as 

K = ( L / ~ T ) ~  x + i p ~ ~ ~ ~ k ~ ]  u,(k) UT(k), (16) 
k 

a linear combination of energy and helicity. 
It follows from (13)-( 15) that N exp ( - K ) ,  where N is a normalization factor, 

is a stable absolute equilibrium distribution, provided only that exp (- K )  is 
integrable over y space. A consequence of the stability of the distribution 
(Kraichnan 1959) is the generalized fluctuation-dissipation theorem 

(Yj(t) (aK/aYi)t+ = sji(4 t’L (17) 

where gj,(t, t’) = (Sy,(t)/Sf,(t’)> is the mean response to an infinitesimal forcing 
termf, added to the right-hand side of (13). The stability property itself is that the 
distribution survives arbitrary, conservative couplings between the members of 
the ensemble. 

For t’ = t, (1 7)  reduces to the generalized equipartition law 

which also may be obtained directly from the form of the distribution N exp ( - K )  
by partial integration (Tolman 1938). In  our case, (18) can be written as 

(u:(k) aK/a@(k)) = P,(k), (19) 

where the transverse projection operator P,,(k) = Sij - kikj/rC2 serves to state 
explicitly that we constrain thevelocity field to be solenoidal, aproperty preserved 
by (8). In (19), u and u* are treated as formally independent while the dif- 
ferentiation is performed. The results are identical to those of the more proper 
procedure of taking real and imaginary parts as independent. Using (16), and 
carrying out the differentiation, we find, finally, that 

is the equipartition law for the distribution N exp ( - K).  
The solution of (20) for the covariance is 

a result which can be verified by substituting back into (20) and using the proper- 
ties of eimi. The verification is easiest if one co-ordinate axis is taken parallel to k 
According to (21), the velocity variance and mean helicity per unit volume 
associated with k are, respectively, ( ~ T / L ) ~  U ( k )  and ( 2 ~ / L ) ~ & ( k ) ,  where 

U ( k )  = 2a/(a2-/32k2), (22) 

Q ( k )  = 2pk”(a“pk2). (23) 
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Again, we have used the properties of eimj. Now take the limit L + co. Noting 
that 

( 2 n / L ) 3 Z +  Sd3k, 
k 

we find for the total velocity variance and mean helicity per unit volume the 
values 

u(k)lcw = sna ( 2 4 )  

In  order for the formal results above to be valid, the distribution N exp ( - K )  
must be integrable, which means that K ,  as given by (16)) must be a positive form. 
The eigenvalues of the Hermitian matrix Stj + $eimj km are readily seen to be 
a, a +pk and a -pk, the first eigenvalue being irrelevant because we restrict 
the phase space to the transverse components of u(k). The conditions for inte- 
grability therefore are 

The positivity of a means that there is no counterpart of the interesting negative- 
temperature, stable-equilibrium states that arise in inviscid two-dimensional 
systems (Kraichnan 1967). 

Writing ( 2 4 )  and ( 2 6 )  as 

a > 0, pk,( < a. ( 2 6 )  

U = 87ra--l~(l- r2k2)-1 P d k ,  Q = 8na-lrS (1 - r2k2)-l k4 dk, 

with r = p/a, we see that U and ) Q )  are both inversely proportional to a and 
both increase monotonically with increasing Irl, within the limits ( 2 6 ) .  However, 
the fractional increase in IQI, as lrl increases at any fixed a, exceeds that of U.  
This is a result, first, of the r factor outside the Q integral and, second, of the k4 
factor in the Q integrand, which emphasizes the higher k values where the 
denominator decreases more rapidly as Irl increases. It follows that each realizable 
pair of U and Q values uniquely determines a and /3. All positive U values are 
realizable, and the realizable range of Q is 

I Q I  < k2U. ( 2 7 )  

As 1/31 3 a/k, ,  the spectra ( 2 2 )  and ( 2 3 )  become increasingly concentratid near 
k,. The statistical form of (7) is 

IQ(k)l G k W 4 .  ( 2 8 )  

The equality is approached, in the limit, only for k = k,. Thus, away from 
the singular limit, there are no absolute equilibrium states- of maximal helicity . 
Suppose we have some initial state of maximal helicity, which then evolves into 
one of the absolute equilibrium states. The equilibrium state will have the same 
U and Q are the initial state, but the spectrum distribution will be different, 
and the equality in (28) will not hold at  any k. The analysis in 3 2 shows that there 
is no obvious constraint to prevent evolution into the equilibrium state, since 
we explicitly demonstrated there that maximal helicity is not preserved by the 
equations of motion. 
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4. Discussion 
Our analysis suggests that the analogy between two-dimensional turbulence 

and three-dimensional helical turbulence is not a close one, despite the existence 
of two quadratic constants of motion in each case. The absolute equilibrium 
ensembles for the helical turbulence show none of the interesting structure 
associated with negative temperatures in the two-dimensional system, In the 
latter case, there were two kinds of extreme distributions: positive-temperature, 
high-enstrophy states with the excitation concerned near theupper cut-off wave- 
number kz;  and negative-temperature, low-enstrophy states with excitation con- 
centrated near the lower cut-off k, (Kraichnan 1967). The high-enstrophy states 
are analogous in form to tihe high-helicity states of the three-dimensional system, 
in which (27) is nearly an equality. But, in contrast to the low-enstrophy states, 
the low-helicity states QlU -+ 0 go over smoothly into the simple energy-equi- 
partition equilibrium states obtained by considering only the energy constant 
of motion. 

This difference is associated with a basic qualitative distinction between the 
nature of enstrophy and helicity. The enstrophy at  a given wavenumber is 
determined by U ( k ) ;  for a given total energy, the total enstrophy can be changed 
only by changing the form of U ( k ) .  On the other hand, the helicity contribution 
from given wavenumbers is independent of U ( k ) ,  subject only to (28). 

The absolute equilibrium ensembles of course are very far from the actual 
states of viscous turbulence. Their value is in pointing to directions in which the 
actual, non-equilibrium states may be plausibly expected to transfer excitation. 
In  this respect, the absence of absolute equilibrium states with energy peaked at 
low wavenumbers suggests that, in contrast to two-dimensional turbulence, we 
should not expect to find a simultaneous cascade of energy from middle wave- 
numbers to low wavenumbers and of helicity from middle wavenumbers to high 
wavenumbers. On the contrary, strong helicity can be expected to inhibit energy 
flow to lower wavenumbers, while the conservation laws do not constrain both 
energy and helicity from simultaneously cascading to higher wavenumbers. 
Thus, suppose that initially there is turbulence of maximal helicity confined to 
a narrow wavenumber band. Because of (28), downward transfer of energy 
without any upward transfer is impossible without violating the conservation 
laws.? However, upward transfer without any downward transfer is possible, 
since, as we saw in 8 2, the maximal helicity condition is not preserved. 

The plausible conclusion is that the inertial-range cascade of energy in iso- 
tropic helical turbulence should not differ qualitatively from that in ordinary 
reflexion-invariant turbulence. The arguments for local cascade, and an inertial- 
range law equal to or close to --g, seem neither weaker nor stronger. If there is 
local cascade, the conservation laws imply that, under the assumption of helical 
driving a t  low wavenumbers, the degree of helicity a t  higher wavenumbers, 
as measured by J&(k) l / [kU(k)] ,  should decrease as onegoesupin theinertialrange. 

t This fact is sufficient t o  infer the result, found by calculation in $2,  that two helical 
waves p and q of the same sign cannot transfer excitation to k if p = q and k < p. An 
argument of analytic continuity extends the inference to k > p = q. 
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The major new qualitative effect with strongly helical turbulence promises 
to be the inhibited flow to lower wavenumbers. This is not important in isotropic 
flows, but may be important in other situations. Quantitatively, we expect, 
from the results of 3 2, that the overall magnitude of energy transfer should be 
depressed by strong helicit y. 

The author has profited from discussions with U. Frisch, J. R. Herring and 
H. K. Moffatt. This work was supported by the Fluid Dynamics Branch of 
the Office of Naval Research under Contract N00014-67-C-0284. 
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